APE

Faster and Longer Context-Augmented Generation via Adaptive Parallel Encoding

Xinyu Yang @ CMU Paper link
Catalyst | 2025-02-20 Find me on X @Xinyu2ML

https://catalyst.cs.cmu.edu/
https://arxiv.org/pdf/2502.05431
https://x.com/Xinyu2ML

Sequence models as a universal abstraction

Sequences can represent various information:

Bit String Text Audio Video DNA

Autoregressive generative models (i.e. Transformers) are sequence models:

However, sequence models limit parallelism ability.

Each token is related to all past tokens, requiring sequential encoding:

o & 977 o
% -
L] L9 L3 Ln—1

Do we need to model everything into one sequence?

Information naturally possesses some structure that can be encoded in parallel:

Main Node
Nodes

ssssssssssssssssssssssss BranChes

SOD SOd SO

Therefore, are there practical scenarios where such a structure can be utilized?

We focus on context-augmented generation.
Context-augmented generation, including RAG and ICL, is a common case that
combines LLMs and external databases, where the information includes:

e Contexts: Multiple independent texts retrieved from external sources
e Query: Questions inputted by the user.
e Response: Answers generated by the LLMs

Passage 1: Sinclair Hill (10 June 1896 ... Which director is younger? Sinclair Hill

"~ Additional Contexts C: lengthy and numerous, hard to compute efficiently ;’ Query Q - Response R

Obviously, different contexts are independent and can be encoded in parallel.

Parallel encoding offers many benefits.

In addition to speedup, parallel encoding enables combination among contexts.

)

-
EE

Pre-caching texts for Fast Inference

Re-using positions for long Context

However, parallel encoding is inaccurate.

Despite these benefits, it remains inaccurate, as there is no guarantee that
independent KV states from different contexts can be compared or combined.

Sequential Encoding © Latency: 80s
Position 0 — 2500 Position 2500 — 5000 Position 5000 — 7500

~ o
@10 Inference start: compute the KV states of contexts on-the-fly
Parallel Encoding @ Latency: 19s © Accuracy: 36.73%

Position 0 — 7500: More and longer contexts are prepended to the Query

e ~ .
wgiy [re-compute and store the KV states of contexts @1 Inference start: load pre-cached contexts

Adaptive Parallel Encoding recovers the drop.

To address these challenges, we propose APE that aligns the distribution of
parallel encoding with sequence encoding with three inference-time steps.

Parallel Encoding @ Latency: 19s © Accuracy: 36.73%

Position 0 — 7500: More and longer contexts are prepended to the Query

- Lo
wagy Pre-compute and store the KV states of contexts . ©10 Inference start: load pre-cached contexts
Our Approach: Adaptive Parallel Encoding @ Latency: 19s @ Accuracy: 39.62%
Answer the question. Position 20 - 7500

- v
Shared Prefix ﬂl Low Temperature i, Scaling Factor | QOur adaptive alignments recover the accuracy

F1 Score
ro 1 b L) o o ™ ro
— N~ ad = o > -~ o

N
=

Q1: Why we choose inference-time steps?

Some previous work try to train something to improve parallel encoding, however,
they suffers from performance degradation on complex reasoning tasks.

B Sequential

24

HotpotQA

2WikiMuQA

BN Parallel

10

9

MuSiQue

s CEPED

24

MultiNews

(a) Retrieval-augmented Generation

Accuracy

B 0-shot; Sequential
B 1-shot; Sequential

70
65
60
55
S0
45

40

35

I

GSMSK (Full-shot = 8)

B Half shot; Sequential
W Full-shot; Sequential

30 L
TriviaQA (Full-shot = 5)

S0 Full-shot; Parallel

LY

Full-shot; CEPED

0.0

475

(b) In-context Learning

MMULU (Full-shot = §)

Q2: Why inference-time steps are enough?

Double check the performance of parallel encoding, it decreases but does not
drop to zero. :> Something connects the KV states from different contexts.

—— Layer 0 Layer 4 ——— Layer 8 —— Layer 12 ——— Layer 16 —— Layer 20 Layer 24 ——— Layer 28
1.0 1.0
£ 09 0.9
o
€ 08 0.8
(7]
0.7
2 o7
3 : 06
O 0.6 , 7 |
oy ™ 105 Pl
10° 10 100 10" 10 10 100 10" 10 10 100 10" 10 10 100 10
(a) LLaMA-3-8B-Instruct (b) LLaMA-3.1-8B-Instruct (c) Mistral-7B-Instruct-v0.3 (d) Gemma-2-9b-it

The secret lies in the “attention sink”, which exhibits similar direction for different inputs.

Cosine Similarity

But why the later tokens also can be compared?

Having similar direction for the initial tokens doesn’t mean later tokens also has
similar directions. However, they may have some connection with the initial token.

—— Layer 0 Layer 4 —— Layer 8 —— Layer 12 —— Layer 16 —— Layer 20 Layer 24 —— Layer 28
1.0 1.0 1.0 1.0
0.8
0.5 0.5
. 0.5
0.0 0.2
0.0 0.0
0.0 ‘
05 05 - Nl ———
. -0.2 -0.5—% 1 ,2 3
10° 10" 10° 10° 10° 10" 10° 10° 10° 10" 10° 10° 10 10 10 10

(a) LLaMA-3-8B-Instruct (b) LLaMA-3.1-8B-Instruct (c) Mistral-7B-Instruct-v0.3 (d) Gemma-2-9b-it

Key states from different contexts are similar.

= \
\ b P kmttlal
\
/
o N /

e

—
- — —
- - -
- - = -
- - —
-— bl

Figure 5 Geometry of Key States.

Next, we move to the value states.

Similarly, the direction of value states is similar across contexts, as they are
decided by the initial states, which exhibit similar directions across examples.

1.0 1.00 1.00
%‘0.8 0.75 0.75
S
€06 050 0.50
(/2]
[0.25
£04 0.25
7]
3 0.00
Oop2 0.00
-0.25
10° 10’ 10° 10° 10 10' 10° 10° 10° 10’ 10° 10° 10° 10' 10° 10°

(e) (f) (9 (h)

Similarity between tokens from different samples in each positions Similarity between the initial token and tokens in different positions

Value states from different contexts can be combined.

Due to the normalization in Softmax operator, value states naturally share similar
magnitudes. Therefore, value states from different contexts can be combined.

In a standard Softmax attention, we attend the query to all past KV states using the following formula:

QK™

O = Softmax(Va

W QeR™ K,V eR™4 (2)

So, what is the source of the performance drop?

e The initial positions result in an abnormal region in the whole context.
e The dot products between the query state and all past key states encounter a
notable increase when the states are positioned close to each other.

T T
08 | —— Layer 0 Layer 16 ~—— Layer0 Layer 16
. Layer 4 —— Layer 20 70 2 Layer 4 —— Layer 20
54 I Layer 8 Layer 24 —— Layer 8 Layer 24
2> | —— lLayer12 —— Layer28 60 8 9 —— layer12 —— Layer28
= | 1 =1
© . (] (] -
= T ‘ ° B2
02 | 3 / 1 [}
E 1 - - 2
a | .E | | .E o -
o i 5° i 5 5
e o . . a s
8 \ I = 30 I = X
o | / | —— Layer0 —— Layer 16 —— Layer 16 (< Y !
-02 20 | Layer 4 ~——— Layer 20 Layer 4 —— Layer 20
i —— Layer8 Layer 24 ~——— Layer8 Layer 24 -10 i
10 | —— Layer 12 Layer 28 —— Layer 12 Layer 28 |
-04 1
10° 10 10° 10° 10° 10' 10° 10° 10° 10' 10° 10°

(a) Query-Key Similarity

(b) Key Magnitude

(¢) Value Magnitude

(d) Query-Key Product

Step 1: Prepending Shared Prefix.

The first step is very direct: Since the first few tokens exhibit abnormal directions
and magnitudes, we prepend a shared prefix to avoid duplication of these tokens.

e If the model has a system prompt, we directly use this system prompt as a
shared prefix for all contexts.

e If the model does not have a system prompt, we additionally add a few “\n”
before all contexts.

Both strategies can work for different context-augmented generation settings, as
no task-specific information are provided in the shared prefix.

Step 2: Adjusting Attention Temperature.

To mitigate the impact of repeating neighboring tokens, we adjust the attention
temperature to a value smaller than one to sharpen the attention distribution.

Attn Score
& v @& B B
g 8 88 8 8

&
2

—— Layer0 Layer 16 —— Layer0 Layer 16 0.008 —— Layer0 Layer 16
Layer 4 —— Layer 20 Ll Layer 4 —— Layer 20 Layer 4 —— Layer 20
~—— Layer 8 Layer 24 —— Layer 8 Layer 24 i —— Layer8 Layer 24
—— Layer 12 —— Layer 28 —— Layer 12 —— Layer 28 —— Layer 12 —— Layer 28
0.002
b 0.001 i
F |
0.000 ! i
0.002
-0.001
-0.004
200 400 600 800 0 200 400 600 800 200 400 600 800

(a) Sequential

(b) Parallel (T = 1.0)

(c) Parallel (T = 0.2)

Parallel T= 1.0 Parallel T=0.2
0.0020 Parallel T = 0.6 Sequential
N
-
]
0.0015
>
©
-
-
©
O 0.0010
-
o
(%]
(2]
00005
k=] il
<
N ! POk
0.0000 — — a .
00 00 600 00

(d) Parallel vs. Sequential

Step 3: Adding Scaling Factor.

However, Step 2 will also change the
whole attention allocated to all context
tokens, as shown by the LogSumExp
value with different T in the figure.

10

o

A
IS}

The magnitude of this value increases
when T decreases for different layers.
To compensate for these changes, we T e =) Layer16

]] Layer 4 —— Layer 20
will add a scaling factor smaller than —— Layer8 Layer 24

. —— Layer 12 —— Layer 28
one to reduce this absolute value. Y Y

LogSumExp

|
N
o

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Figure 8 Parallel w/ Different 7.

Efficient Implementation

These new hyperparameters make our APE incompatible with flash attention. To
combine the computation for context and non-context tokens, we choose to
employ flash attention twice—once for each part—and then merge the results.

def ape_attention(query, key, value, temperature, scale):
split key and value states into context and non—context parts
key_context, key_other = key
value_context, value_other = value
attn_output_context, lse_context = flash_attn(query, key, value, temperature = temperature)
attn_output_other, lse_other = flash_attn(query, key, value)
Ise_context = lse_context*(scale)

attn_weights = [lse_context, lse_other|
attn_weights = Softmax(attn_weights)
value_states = [attn_output_context, attn_output_other]

attn_output = attn_weights @ value_states

Performance Analysis: RAG

APE maintains 98% of the sequential encoding performance on ChatRAG-Bench.

Method ‘ INSCIT Doc2Dial TopicCQA Qrecc QuAC Average
Contriever, Sequential 19.97 23.85 30.49 46.75 26.57 29.53
Contriever, APE 19.88 23.28 28.84 46.28 26.80 29.02
A -0.09 -0.57 -1.65 -0.47 +0.23 -0.51
GTE-base, Sequential 21.58 32.35 33.41 46.54 30.69 32.91
GTE-base, APE 20.85 30.99 31.92 45.83 30.35 31.99
A -0.73 -1.36 -1.49 -0.71 -0.34 -0.92
Dragon-multiturn, Sequential 25.42 36.27 36.10 49.01 35.12 36.38
Dragon-multiturn, APE 23.84 34.93 33.80 48.70 34.92 35.24
A -1.58 -1.34 -2.30 -0.31 -0.20 -1.14

All texts, APE ‘ 27.22 36.13 35.72 49.15 35.70 36.78

By retrieving more texts, APE improves performance on LongBench.

Model]MuSiQue Qasper 2WikiMQA DuRead HotpotQA NarratQA MFQA zh MFQA _en Avg.
LLAMA-3-8B-INSTRUCT 20.70 41.05 30.02 9.55 45.90 20.98 58.54 45.04 33.97
C200x 20, Sequential 27.93 42.71 38.35 12.65 49.60 22.78 57.82 48.94 37.60
C4000x20, PCW 18.82 42.59 40.99 21.57 47.09 23.29 54.40 45.05 36.73
C4000x 20, APE 26.19 42.32 44.43 23.13 49.71 30.71 55.03 4541 39.62
MISTRAL-7B-INSTRUCT-V0.3| 10.05 31.08 22,12 17.68 32.09 19.68 32.03 40.38 25.64
C200x%20, Sequential 11.58 21.98 24.44 20.80 32.79 16.06 34.43 38.40 25.06
C4000x20, PCW 17.58 35.57 32.97 18.70 37.05 14.10 34.69 40.14 28.85
C4000x 20, APE 20.30 36.81 34.37 21.89 42.33 20.49 40.20 44.03 32.55
GEMMA-2-9B-IT 22.57 39.99 48.06 27.40 47.49 23.11 50.81 45.35 38.10
C200x 10, Sequential 30.69 42.86 53.55 28.04 52.05 24.45 50.25 48.34 41.28
C2000x20, PCW 26.27 46.69 47.59 23.43 48.95 2711 56.69 49.81 40.82
C2000x20, APE 33.38 47.72 49.49 28.43 56.62 30.41 56.52 50.84 44.18
LLAMA-3.1-8B-INSTRUCT 22.18 46.81 40.58 34.61 43.97 23.08 61.60 51.89 38.98
C200x20, Sequential 30.62 42.33 44.39 33.51 49.97 23.87 56.87 55.14 40.22
C4000x 20, PCW 21.23 41.52 44.87 31.11 49.47 19.98 60.90 51.19 38.44
C4000x20, APE 26.88 43.03 50.11 32.10 55.41 30.50 62.02 52.51 42.86

Performance Analysis: ICL

APE maintains 93% of the sequential encoding performance on ICL tasks. It is the
only parallel encoding method works for complex reasoning ICL scenarios.

B 1-shot; Sequential I Half-shot; Sequential W Full-shot: Sequential 0 Full-shot; Parallel 00 Full-shot; APE B 1-shot; Sequential W Half-shot: Sequential B Full-shot; Sequential W Full-shot; Parallel 0 Full-shot; APE
74
74 73 65.5 75 68
73
7 & 70 &
71 72
>, 70 > 65
S . 5 7 66
]]
5 68 50 65
8 y 69 8 70
55
< 68 < 69 64

2

=)
=

[=a3
=]

GSMS8K

67
66

65

(a) LLAMA-3-8B-INSTRUCT

TriviaQA

MMLU

w
=

r'S
O

N
<

GSMS8K

(b) LLAMA-3.1-8B-INSTRUCT

68

67

66

TriviaQA

63

62

MMLU

Performance Analysis: Many-shot CAG

APE successfully handles hundreds of contexts in parallel without degradation.

e Parallel encoding leads to performance drop.

e Putting all contexts into nearby positions improve performance.

\ Retrieval-augmented Generation | In-context Learning
Method ‘ ArguAna FEVER NQ SciFact | Date Salient Tracking?7 Web
Sequential, Zero-shot 11.15 7.78 17.78 1.74 20.00 8.89 1.12 8.89
Sequential, Few-shot 11.20 9.78 17.81 9.49 36.64 38.89 6.67 38.89
Sequential, Half-shot 15.34 13.12 19.64 16.12 | 45.55 42.22 8.89 55.56
Sequential, Full-shot 12.84 1419 24.54 16.88 | 46.67 46.67 8.89 58.89
8.89 58.89

APE, Full-shot] 16.32 14.70 21.91 15.72]43.33 45.55

Efficiency Analysis

APE reduces the prefilling time to nearly zero. Therefore, it achieve an end-to-end
4.5x speedup when prefilling 128K-length context and generating 256 tokens.

== Sequential Encoding 641" —o— Sequential Encoding 21{ === Sequential Encoding 807 == Sequential Encoding
141" —w— Minference 561 =w— Minference T 18 === MInference 70} === MiInference
_12f ==— APE 481 =+— APE - == APE 60— APE
z 15
S0 401 50
% 8 32 12 sl
= 6 24 !
— 9 30
2 8 /
3 10
0 0 J—
4K 8K 16K 32K 64K 128K 4K 8K 16K 32K 64K 128K 4K 8K 16K 32K 64K 128K 4K 8K 16K 32K 64K 128K

(a) Prefill Time (bsz=1) (b) Prefill Time (bsz=4) (c) Total Time (bsz=1) (d) Total Time (bsz=4)

APE Cache Design

Moreover, APE unlock new
potential for real-world CAG
serving systems. By storing
all external contexts into KV
states, APE maintains a
100% cache hit rate for
different user queries and
corresponding retrieved
contexts. In contrast, prefix
cache can only have a 42%
hit rate with only 4 contexts.

S s s s s e e S B e B e B EEE SEE e B SEE SEE e EEE BEE GEe e BE SEe SEe Ean S Sae e e e e e

- 0—@ v
42% Hit Rate\‘ ®o—0—@ -0

(a) Prefix Cache

.) 100% Hit Rate H—>‘ Hit! «
—
“I Dispatch Cache I _>‘ -

(b) APE Cache

Future Directions

APE represents an initial exploration into enhancing parallelism for autoregressive
generative models, which only leverages the inherent parallelizable structure of
the data. Therefore, the future directions of APE should include:

e Building real-world APE cache system to serving RAG scenarios.

e Extending APE to multi-modal CAG scenarios with more information.

e Encouraging parallelism during generation. For example, when we do
repeated sampling or subtask solving, different trajectories can be computed
in a parallel way, while the merging mechanism in APE/Parallel Encoding can
be used to combine these information in a smart way.

If you enjoyed this talk, you can find me on the Catalyst Slack channel!

