
APE
Faster and Longer Context-Augmented Generation via Adaptive Parallel Encoding

Xinyu Yang @ CMU
Catalyst | 2025-02-20

Paper link
Find me on X @Xinyu2ML

https://catalyst.cs.cmu.edu/
https://arxiv.org/pdf/2502.05431
https://x.com/Xinyu2ML

Sequence models as a universal abstraction

Sequences can represent various information:

Autoregressive generative models (i.e. Transformers) are sequence models:

Bit String Text Audio Video DNA

X0 X1 Xn……

However, sequence models limit parallelism ability.

Each token is related to all past tokens, requiring sequential encoding:

Do we need to model everything into one sequence?

Information naturally possesses some structure that can be encoded in parallel:

Therefore, are there practical scenarios where such a structure can be utilized?

We focus on context-augmented generation.

Obviously, different contexts are independent and can be encoded in parallel.

Context-augmented generation, including RAG and ICL, is a common case that
combines LLMs and external databases, where the information includes:

● Contexts: Multiple independent texts retrieved from external sources
● Query: Questions inputted by the user.
● Response: Answers generated by the LLMs

In addition to speedup, parallel encoding enables combination among contexts.

KVKV

Parallel encoding offers many benefits.

Pre-caching texts for Fast Inference

Re-using positions for long Context

KVKV
KVKVKVKV

KVKVKVKV
KVKVKVKV

However, parallel encoding is inaccurate.

Despite these benefits, it remains inaccurate, as there is no guarantee that
independent KV states from different contexts can be compared or combined.

Adaptive Parallel Encoding recovers the drop.

To address these challenges, we propose APE that aligns the distribution of
parallel encoding with sequence encoding with three inference-time steps.

Q1: Why we choose inference-time steps?

Some previous work try to train something to improve parallel encoding, however,
they suffers from performance degradation on complex reasoning tasks.

Q2: Why inference-time steps are enough?

Double check the performance of parallel encoding, it decreases but does not
drop to zero. Something connects the KV states from different contexts.

The secret lies in the “attention sink”, which exhibits similar direction for different inputs.

But why the later tokens also can be compared?

Having similar direction for the initial tokens doesn’t mean later tokens also has
similar directions. However, they may have some connection with the initial token.

Key states from different contexts are similar.

Next, we move to the value states.

Similarly, the direction of value states is similar across contexts, as they are
decided by the initial states, which exhibit similar directions across examples.

Value states from different contexts can be combined.

Due to the normalization in Softmax operator, value states naturally share similar
magnitudes. Therefore, value states from different contexts can be combined.

So, what is the source of the performance drop?

● The initial positions result in an abnormal region in the whole context.
● The dot products between the query state and all past key states encounter a

notable increase when the states are positioned close to each other.

Step 1: Prepending Shared Prefix.

The first step is very direct: Since the first few tokens exhibit abnormal directions
and magnitudes, we prepend a shared prefix to avoid duplication of these tokens.

● If the model has a system prompt, we directly use this system prompt as a
shared prefix for all contexts.

● If the model does not have a system prompt, we additionally add a few “\n”
before all contexts.

Both strategies can work for different context-augmented generation settings, as
no task-specific information are provided in the shared prefix.

Step 2: Adjusting Attention Temperature.

To mitigate the impact of repeating neighboring tokens, we adjust the attention
temperature to a value smaller than one to sharpen the attention distribution.

Step 3: Adding Scaling Factor.

However, Step 2 will also change the
whole attention allocated to all context
tokens, as shown by the LogSumExp
value with different T in the figure.

The magnitude of this value increases
when T decreases for different layers.
To compensate for these changes, we
will add a scaling factor smaller than
one to reduce this absolute value.

Efficient Implementation

These new hyperparameters make our APE incompatible with flash attention. To
combine the computation for context and non-context tokens, we choose to
employ flash attention twice—once for each part—and then merge the results.

Performance Analysis: RAG

APE maintains 98% of the sequential encoding performance on ChatRAG-Bench.

By retrieving more texts, APE improves performance on LongBench.

Performance Analysis: ICL

APE maintains 93% of the sequential encoding performance on ICL tasks. It is the
only parallel encoding method works for complex reasoning ICL scenarios.

Performance Analysis: Many-shot CAG

APE successfully handles hundreds of contexts in parallel without degradation.

● Parallel encoding leads to performance drop.
● Putting all contexts into nearby positions improve performance.

Efficiency Analysis

APE reduces the prefilling time to nearly zero. Therefore, it achieve an end-to-end
4.5× speedup when prefilling 128K-length context and generating 256 tokens.

APE Cache Design

Moreover, APE unlock new
potential for real-world CAG
serving systems. By storing
all external contexts into KV
states, APE maintains a
100% cache hit rate for
different user queries and
corresponding retrieved
contexts. In contrast, prefix
cache can only have a 42%
hit rate with only 4 contexts.

Future Directions

APE represents an initial exploration into enhancing parallelism for autoregressive
generative models, which only leverages the inherent parallelizable structure of
the data. Therefore, the future directions of APE should include:

● Building real-world APE cache system to serving RAG scenarios.
● Extending APE to multi-modal CAG scenarios with more information.
● Encouraging parallelism during generation. For example, when we do

repeated sampling or subtask solving, different trajectories can be computed
in a parallel way, while the merging mechanism in APE/Parallel Encoding can
be used to combine these information in a smart way.

If you enjoyed this talk, you can find me on the Catalyst Slack channel!

